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Resul ts  a re  given f r o m  m e a s u r e m e n t s  on the s ize and dis tr ibut ion of the drople ts  in the 
spraying  of a h igh-v i scos i ty  liquid by pneumatic  pumps.  

Various  industr ial  spraying applicat ions requi re  r e s t r i c t i ons  of droplet  size,  product ion of a definite 
s ize spec t rum,  and a re la t ionship  to the var ious  p rope r t i e s  of the liquid. As r e g a r d s  highly v iscous  liquids, 
theore t ica l  and exper imenta l  r e su l t s  do not pe rmi t  a sufficiently comple te  account of the re la t ion  of the 
mean  d i ame te r  and the s ize  dis t r ibut ion to the  spraying conditions.  

The r ea son  for  this is pa r t ly  the complexi ty  of the p r o c e s s  i tself  and also that there  difficult ies a r i s e  
in making the m e a s u r e m e n t s .  The bes t  method of de termining drop s ize  is to take samples  f rom the jet  
onto g lass  s l ides  coated with an immisc ib l e  liquid [1]. This  method gives r e su l t s  compara t ive ly  rapidly,  
but it does not e l iminate  the possibi l i ty  of droplet  coa lescence  on the g lass ,  d is tor t ion of droplet  shape, or  
e r r o r s  due to the pa r t i cu l a r  sampling s i te .  

We have es t imated  droplet  s ize  by using the po lymer iza t ion  of organic  r e s i n s  to give solid spher ica l  
pa r t i c l e s  as a f r ee ly  flowing powder.  The spraying  liquid was thermose t t ing  p h e n o l - f o r m a l d e h y d e  res in ,  
which was p r e p a r e d  as an aqueous solution with values  of v i scos i ty  more  than 0.01 and r a the r  l ess  than 100 
N - s e e / m  2. These  drople ts  rapidly  solidify to sphe res  when heated by the gas,  and these may contain bub- 
bles that do not produce holes on the surface ,  the par t i c le  s ize  and the gas  t e m p e r a t u r e  being the decis ive  
f ac to r s  he r e .  These  spheres  do not d issolve  in liquids and do not mel t  [2]. 

The spraying  was p e r f o r m e d  in a l abora to ry  spraying d r i e r  heated by fuel gases ,  with external  m i x -  
ing for the pneumatic  primps. The pump was placed outside the drying chamber .  The d i ame te r  of the a i r  
nozzle was 3.5-5.0 ram, while that for  the liquid was 1.3-1.5 ram.  The solidified powder was col lected in 
the chamber  and in t rapping devices ,  and f rom these s amples  we es t imated  the par t i c le  s ize .  The powder 
was f rac t ionated  by sieving and washing with water  je t s  on the s ieve .  The mean  f rac t ion  s ize  in the powder 
was then conver ted  to droplet  s ize with allowance for  the densi ty  of the solid pa r t i c l e s  and the loss  during 
po lymer iza t ion .  

In this way we r eco rded  volume dis tr ibut ion curves  for  the droplet  s i zes  for  liquids with v i scos i t i e s  
at 293~ f r o m  0.02 to 6.00 N - s e c / m  2. 

S imi la r  curves  were  r eco rded  for  a i r  t e m p e r a t u r e  ahead of the pump f r o m  296 to 463~ (235-369~ 
when c o r r e c t e d  for  adiabatic  expansion), and with ra t ios  of the m a s s  flow ra t e s  of a i r  and liquid in the 
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Fig. 1. Size distribution of drops in spray- 
ing liquids of various viscosities (293~ i) 
0.03 N - s e e / m 2 ;  2) 2.00 N ' s e c / m 2 ;  3) 2.50 
N . s e c / m 2 ;  4) 3.73 N ' s e c / m 2 ;  for  the fol -  
lowing p a r a m e t e r s :  Pal = 237-240 m / s e c ;  
p = 1120-1200 kg /m3;  (r = 0.031 N / m ;  G a 
/ G  l = 5. 
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Fig. 2. Dependences of the coefficients k (1) and a m (2) in the 
equation of total distr ibution of the drops (1) and of the mean vol-  
u m e - s u r f a c e  d iameter  of the drops d32 (3) on: I) liquid v i scos i ty# ;  
II) the tempera ture  of adiabatic expansion of the air  T in spraying 
liquid of v iscos i ty  (293~ 2.5 N ' s e c / m 2 ;  III) rat io of the weight 
flow ra tes  of a ir  and liquid Ga/G l in spraying liquid of v iscos i ty  
(293~ 2.0 N ~  2. 

range 1.47-5.00. Figure 1 shows the volume distribution curves  by size for var ious  cases ;  the typical fea-  
ture is that the curves  move to smal le r  s izes as the viscosi ty  dec reases .  

We also found that the pa rame te r s  of the spraying p rocess  affect the coefficients in the equation 
descr ibing the distribution. The l i tera ture  has many equations for par t icu lar  and some for more  general  
distr ibution curves  [1, 3], of which the R o s i n - R a m m l e r  equation is s implest  to use in calculations.  

This equation gives an exponential relationship of the form 

1 
v : ,  exp(• (11 

\ am / 
TO find the coefficients k and a m we use an expression obtained after taking logar i thms twice: 

1 
lglg --k(lgd--lga,,~)--0.3625. (2) 

1- -V 

In Fig. 2 resul ts  are  given for k and a m and also for the mean v o l u m e - s u r f a c e  d iameter  da2: curve I shows 
the dependence on the v iscos i ty  at 293~ curve II the dependence on the tempera ture  of adiabatic expansion 
of the air ;  and curve III the weight ra t ios  of the air  and iiquid flows. We found that k and a m are  largely 
independent of the v iscos i ty  above 2-3 N - s e e / m  2, air  t empera tures  above 300-320~ and rat ios  of air  and 
liquid flows above 3. The trend in da2 is analogous to that in a m for the same quantities. These curves  
enable us to determine the droplet distribution for any spraying conditions within the ranges employed. 
Figure 2 shows that it is not sa t i s fac tory  to evaluate the sp raye r  per formance  mere ly  in t e rms  of the mean 
droplet  d iameter .  

These distr ibutions are  better  charac te r ized  by the coefficients in the distribution equations. Thus 
it is desirable  to obtain mathematical  relat ionships relat ing the complex of p roces s  pa rame te r s  to the 
coefficients in the distribution. 

As such equations have not yet been introduced into the theory and prac t ice  of spraying, we examined 
the per formance  of sp raye r s  with highly viscous liquids by means of the mean v o l u m e - s u r f a c e  drop diam- 
eter, using the wideiy known equation of Nukiame and Tanasawa [4]: 

da~-- 585.10:' ] J 7  , b~ 10.45 VZ / '.5 " UaZl/-~. 1683(~p}  ( 1 0 0 0 T a  ! (3, 

This empir ical  equation was deduced f rom experiments  with viscosi t ies  down to 0.03 N - s e e / m  2. Our r e -  
suits showed that for # = 0.02-0.03, N �9 see /m2;  ~ = 0.026-0.051 N / m ;  O = 1120-1160 kg /m3;  Ual = 200-237 
m / s e c ;  1000 VI/V a = 0.19-0.26 the value of da2 obtained experimental ly agrees  sa t i s fac tor i ly  with that cal-  
culated f rom (3), whereas  at higher v iscos i t ies  there were considerable discrepancies ,  as has been noted 
before [1]. 
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TABLE 1. N u m e r i c a l  Values  of the Coeff ic ients  of 
Eq.  (4) 

Coefficient No. 1 No. 2 No. 3 

A,10-s 
B 
m 
n 

--3017,8 
+381,9 
+0,032 
-F0,165 

--293,3 
+36,9 
+1,714 
+0,485 

--1650,5 
+I68,3 
+0,488 
+0,168 

T A B L E  2. Values of the Mean V o l u m e - S u r f a c e  D i a m e t e r  of the 
Drops  d32 in Spraying  Liquids  of Var ious  V i scos i t i e s  

/1, N - s e c / m  z at 

293~ 

2,20 
3,37 
1,1O 
0,03 

P 
d32 , /1 

equ.~3~ ', No. 1 I No. 2 
m 

101,9 42,3 45,0 
54,0 -- 76,7 
65.0 -- --  
27,9 -- -- 

No. 3 

48,4 
62,2 
30,7 

e 
eg'2., ~ " 

43,4 
78,2 
38,8 
27,4 

T h e r e f o r e  we d e t e r m i n e d  the coef f ic ien ts  in (3) f r o m  the expe r imen ta l  data  obtained so as  to be able 
to extend i ts  r ange  of appl ica t ion  to highly v i scous  l iquids;  we wr i te  (3) in the f o r m  

d3.~ = A V ~- B 1000 ) �9 (4) 
" u a:z K ,~  v~  , 

Moving the f i r s t  t e r m  on the r igh t  of Eq.  (4) to the left and taking l oga r i t hms  we get  

( c ) In d32--A V - ~ - _ i = l n B - j - m l n (  .---~-~_ -~n ln  1000 Vl (5) 
ua~ Vp / \ 1/(r9 / ~ Va ' 

w h e r e  the coef f ic ien ts  A, lnB, m, and n a r e  found f r o m  the condi t ion of m in ima l  devia t ion of the ex p e r i -  
men ta l  va lues  of da2 f r o m  those  ca lcu la ted  f r o m  (4) o r  (5) in a c c o r d a n c e  with 

~t n (d~2 --,4 (6) S E [ l n B @ m l n ( ~ ) , ~ -  In ( 1 0 0 0 @ ) - - I n \  . ] /~-_- / ]  2, 
Ua 1 I' P / J  

w h e r e  In_B, m, and n w e r e  ca lcu la ted  by leas t  s q u a r e s  fo r  a g iven A.  The  m a x i m u m  of S was  found by the 
method  of d ichonomyns  [5]. 

All  the ca lcu la t ions  were  done by c o m p u t e r ;  Table  1 g ives  the r e s u l t s  of A, B, m and n for  highly 
v i s cous  l iquids .  The n u m b e r s  denote  the fol lowing r anges  of the p a r a m e t e r s :  the o ther  p a r a m e t e r s  were  
ana logous  to No, 1; p = 2 .20-2.28 H . s e c / m 2 ;  a = 0.031-0.041 N / m ;  p = 1200 k g / m 3 ;  Ual = 237-276 m / s e c ;  
V 1 / V a . 1 0 0 0  = 0.19-0.661 No. 2 # = 2.20-3.37 N . s e c / m 2 ;  Ual = 237-300 m / s e c ;  No. 3/~ = 0 .82-3 .37 N . s e c  
/m~;  V1/V a �9 1000 = 0 .14-0.66 the o ther  p a r a m e t e r s  being analogous to No. 2. 

Table  2 ind ica tes  the d i s c r e p a n m e s  between the expe r imen ta l  va lues  of d32 and those ca lcu la ted  f r o m  
(3) and (4) us ing the r e s u l t s  found for  the coef f ic ien ts .  The n u m b e r s  in Table  2 c o r r e s p o n d  to the r anges  
of the p a r a m e t e r s  and the coef f ic ien ts  of Tab le  1; as  seen  f r o m  Table  2, the devia t ion of d32 ca lcu la ted  
f r o m  the coef f ic ien ts  for  the v i scous  l iquids is the less  the n a r r o w e r  the v i s c o s i t y  range  used in d e t e r -  
mining the coef f ic ien ts .  

Thus  Equat ion (3) m a y  be used to ca lcu la te  the m e a n  d i a m e t e r  o f  liquid d rop le t s  for  h igher  v i s c o s i -  
t ies  if the app rop r i a t e  c o r r e c t i o n s  a re  in t roduced  into the coef f ic ien ts  in this equat ion.  

V 
d 

d32 
# 

(T 

N O T A T I O N  

is the number ,  by volume,  of d rops  of l a r g e r  s i ze  (d imens ion less ) ;  
is the d i a m e t e r  of d rops ,  /~; 
is the mean  v o l u m e - s u r f a c e  d i a m e t e r  of d rops ,  /z; 
is the dynamic  v i s cos i t y  of liquid, N .  s ec /m2 ;  
is the su r f a c e  tens ion of liquid, N / m ;  
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P 
Ga/GI 
VI/Va 
Pal 
T 

is the density of liquid, kg/m3; 
is the ratio weight flow rate of air and liquid (dimensionless); 
is the ratio of volume flow rate of air and liquid (dimensionless); 
is the velocity of air relative to liquid, m/see; 
is the temperature of adiabatic expansion of air, ~ 

Subscripts 

e is the experimental value; 
p is the predicted value. 

1. 

2. 

3. 
4. 
5. 
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