SPRAYING OF A LIQUID BY PNEUMATIC PUMPS

L. A. Reusova, M. V. Lykov, ‘ UDC 66.069.8
and G. V. Babur ‘

Results are given from measurements on the size and distribution of the droplets in the
spraying of a high-viscosity liquid by pneumatic pumps.

Various industrial spraying applications require restrictions of droplet size, production of a definite
size spectrum, and a relationship to the various properties of the liquid. As regards highly viscous liquids,
theoretical and experimental results do not permit a sufficiently complete account of the relation of the
mean diameter and the size distribution to the spraying conditions.

The reason for this is partly the complexity of the process itself and also that there difficulties arise
in making the measurements, The best method of determining drop size is to take samples from the jet
onto glass slides coated with an immiscible liquid [1]. This method gives results comparatively rapidly,
but it does not eliminate the possibility of droplet coalescence on the glass, distortion of droplet shape, or
errors due to the particular sampling site,

We have estimated droplet size by using the polymerization of organic resins to give solid spherical
particles as a freely flowing powder. The spraying liquid was thermosetting phenol —formaldehyde resin,
which was prepared as an aqueous solution with values of viscosity more than 0.01 and rather less than 100
N-sec /mz. These droplets rapidly solidify to spheres when heated by the gas, and these may contain bub-
bles that do not produce holes on the surface, the particle size and the gas temperature being the decisive
factors here, These spheres do not dissolve in liquids and do not melt {2].

The spraying was performed in a laboratory spraying drier heated by fuel gases, with external mix-
ing for the pneumatic pumps. The pump was placed outside the drying chamber, The diameter of the air
nozzle was 3.5-5.0 mm, while that for the liquid was 1.3-1.5 mm. The solidified powder was collected in
the chamber and in trapping devices, and from these samples we estimated the particle size. The powder
was fractionated by sieving and washing with water jets on the sieve. The mean fraction size in the powder
was then converted to droplet size with allowance for the density of the solid particles and the loss during
polymerization,

In this way we recorded volume distribution curves for the droplet sizes for liquids with viscosities
at 293°K from 0.02 to 6.00 N-sec /m?,

Similar curves were recorded for air temperature ahead of the pump from 296 to 463°K (235-369°K
when corrected for adiabatic expansion), and with ratios of the mass flow rates of air and liquid in the
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Fig. 2. Dependences of the coefficients k (1) and ap, (2) in the
equation of total distribution of the drops (1) and of the mean vol-
ume— surface diameter of the drops d, (3) on: I) liquid viscosity y;
IT) the temperature of adiabatic expansion of the air T in spraying
liquid of viscosity (293°K) 2.5 N *sec /m?; III) ratio of the weight
flow rates of air and liquid G, /G; in spraying liquid of viscosity
(293°K) 2.0 N-sec/m?,

range 1.47-5.00. Figure 1 shows the volume distribution curves by size for various cases; the typical fea-
ture is that the curves move to smaller sizes as the viscosity decreases.

We also found that the parameters of the spraying process affect the coefficients in the equation
describing the distribution. The literature has many equations for particular and some for more general
distribution curves [1, 3], of which the Rosin—Rammler equation is simplest to use in calculations,

This equation gives an exponential relationship of the form

el — L (N
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To find the coefficients k and g, we use an expression obtained after taking logarithms twice:

1

In Fig. 2 results are given for k and ., and also for the mean volume— surface diameter ds,: curve I shows
the dependence on the viscosity at 293°K; curve II the dependence on the temperature of adiabatic expansion
of the air; and curve TII the weight ratios of the air and liquid flows. We found that k and g, are largely
independent of the viscosity above 2-3 N-sec /m?, air temperatures above 300-320°K and ratios of air and
liguid flows above 3. The trend in d,, is analogous to that in gy, for the same quantities. These curves
enable us to determine the droplet distribution for any spraying conditions within the ranges employed.
Figure 2 shows that it is not satisfactory to evaluate the sprayer performance merely in terms of the mean
droplet diameter,

These distributions are better characterized by the coefficients in the distribution equations. Thus
it is desirable to obtain mathematical relationships relating the complex of process parameters to the
coefficients in the distribution.

As such equations have not yet been introduced info the theory and practice of spraying, we examined
the performance of sprayers with highly viscous liquids by means of the mean volume —surface drop diam-
eter, using the widely known equation of Nukiame and Tanasawa [4]:

P 0.45 1.5
4, 585100 -V O _ - 1683( " ) (1000 Zz_) ‘ -
Uag Vo Vop v,

This empirical equation was deduced from experiments with viscosities down to 0,03 N-sec/m?®. Our re-
sults showed that for u = 0.02-0.03, N-sec/m? ¢ = 0.026-0.051 N/m; p = 1120-1160 kg /m?®; u,; = 200-237
m/sec; 1000 V;/V, = 0.19-0.26 the value of dj obtained experimentally agrees satisfactorily with that cal-
culated from (3), whereas at higher viscosities there were considerable discrepancies, as has been noted

before [1].

1265



TABLE 1., Numerical Values of the Coefficients of
Eq. (4)
Coefficient No. 1 ! } No., 3
A.103 —3017,8 —993,3 —1650,5
B +4-381,9 36,9 +168,3 -
m --0,032 +1,714 | 40,488
n 0,165 10,485 | 0,168
)

TABLE 2, Values of the Mean Volume—Surface Diameter of the
Drops ds, in Spraying Liquids of Various Viscosities

, 3
u, N-sec/m? at dgg, M £ 0
203°K a2
e, ) | No.1 | No.2 | No. 3
2,20 101,9 42,3 45,0 48,4 43,4
3,37 54,0 — 76,7 62,2 78.2
1,10 65,0 — - 30,7 38.8
0,03 27,9 — — = 27.4

Therefore we determined the coefficients in (3) from the experimental data obtained so as to be able
to extend its range of application to highly viscous liquids; we write (3) in the form

Vo

m Vl \n
dy, = A ‘+B( *L) (1000 ) . 4
? uale ch Va / ( )
Moving the first term on the right of Eq. (4) to the left and taking logarithms we get
. \ /
In (d,,f—A VG__):lnB«’rman ,“_>+n1n (1000 Vi ) (5)
uy Ve V op \ Va )

where the coefficients A, InB, m, and n are found from the condition of minimal deviation of the experi-
mental values of d;, from those calculated from (4) or (5) in accordance with
)
av 0/d’

S':V[lnB-+nzln(_ Vi )—m(dw_A

“_)+n1n (1000
2 a

where InB, m, and n were calculated by least squares for a given A, The maximum of S was found by the
method of dlchonomyns [5]1.

(6)

All the calculations were done by computer; Table 1 gives the results of A, B, m and n for highly
viscous liquids. The numbers denote the following ranges of the parameters: the other parameters were
analogous to No, 1; u =2.20-2.28 H - sec/mz, o =0.031-0.041 N/m; p = 1200 kg/m ug] = 237-276 m/sec;
V/V 1000 =0.19~0.665 No. 2 p = 2.20-3.37 N -sec/m?; uy| = 237-300 m/sec; No. 3 p = 0.82-3.37 N -sec
/ m* ;3 V1/V,-1000 = 0.14-0.66 the other parameters being analogous to No. 2.

Table 2 indicates the discrepancies between the experimental values of d;, and those calculated from
(3) and (4) using the results found for the coefficients. The numbers in Table 2 correspond to the ranges
of the parameters and the coefficients of Table 1; as seen from Table 2, the deviation of dy, calculated
from the coefficients for the viscous liquids is the less the narrower the viscosity range used in deter-
mining the coefficients. ‘

Thus Equation (3) may be used to calculate the mean diameter .of liquid droplets for higher viscosi-
ties if the appropriate corrections are introduced into the coefficients in this equation.

NOTATION
v is the number, by volume, of drops of larger size (dimensionless);
d is the diameter of drops, u;
ds, is the mean volume— surface diameter of drops, u;
U is the dynamic viscosity of liquid, N.sec/m?;
o is the surface tension of liquid, N/m;
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P is the density of liquid, kg/m?;

Ga/Gy is the ratio weight flow rate of air and liquid (dimensionless);
Vi/Va is the ratio of volume flow rate of air and liquid (dimensionless);
Bal is the velocity of air relative to liquid, m /sec;

T is the temperature of adiabatic expansion of air, °K.

Subscripts

e is the experimental value;
p is the predicted value.
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